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New methodology for verification of finite-volume computational methods using un-

structured grids is presented. The discretization order properties are studied in compu-

tational windows, easily constructed within a collection of grids or a single grid. Tests

are performed within each window and address a combination of problem-, solution-,

and discretization/grid-related features affecting discretization error convergence. The

windows can be adjusted to isolate particular elements of the computational scheme,

such as the interior discretization, the boundary discretization, or singularities. Studies

can use traditional grid-refinement computations within a fixed window or downscaling,

a recently-introduced technique in which computations are made within windows con-

tracting toward a focal point of interest. Grids within the windows are constrained to be

consistently refined, allowing a meaningful assessment of asymptotic error convergence

on unstructured grids. Demonstrations of the method are shown, including a compar-

ative accuracy assessment of commonly-used schemes on general mixed grids and the

identification of local accuracy deterioration at boundary intersections. Recommenda-

tions to enable attainment of design-order discretization errors for large-scale computa-

tional simulations are given.

Introduction

There is an increasing reliance on computational simulations in aircraft design practices, sup-

plementing traditional analytic and experimental approaches. Verification and validation method-

ologies1 are being developed to ensure the correct application of these simulations. Verification
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methodologies for structured grids are relatively well-developed in comparison to unstructured

grids, especially grids containing mixed elements or grids derived through agglomeration tech-

niques. The summary of the latest of three Drag Prediction Workshops2 illustrates the problems as-

sociated with assessing errors in practical complex-geometry/complex-physics applications. Cur-

rent practices tend to compare relative errors between methods and experimental results rather than

absolute errors. The motivation for this paper was to propose verification methodologies to predict

the code performance in such large-scale computational endeavors.

In an earlier paper,3 analytical and computational methods for evaluating the accuracy of finite-

volume discretization (FVD) schemes defined on general unstructured meshes were presented.

The study corrected a misconception that the discrete solution (discretization) accuracy of FVD

schemes on irregular grids is directly linked to convergence of residuals evaluated with the exact

solution (truncation errors). In fact, convergence of truncation errors is a sufficient but not a neces-

sary condition. Definitions and relations between discretization and truncation errors are discussed

in the earlier paper3 as well as in this paper.

A major computationaltool introduced in this earlier paper is adownscaling (DS) test. Per-

formed for a known exact or manufactured solution, the test consists of a series of inexpensive com-

putational experiments that provide local estimates for the convergence orders of the discretization

and truncation errors by comparing errors obtained on different scales. The test does not impose

any restriction on the grid structure. The concept of consistent refinement was introduced to allow

a meaningful assessment of asymptotic error convergence on unstructured grids. Analysis methods

predicting the performance of DS tests were also developed. The downscaling technique is similar

in motivation to the shrinking-grid method of Herbert and Luke4 but is quite different near the

boundaries and does not invoke statistically-sampled results.

The downscaling approach is expanded in this paper to address verification of unstructured-

grid computational methods intended for large-scale applications. Convergence of discretization

error is studied within computational windows. The windows are constructed within a collection

of grids or a single grid. A test performed in each window addresses a combination of problem-,

solution-, and discretization/grid-related features affecting discretization error convergence. The

windows can be adjusted to isolate particular elements of the computational scheme, such as the

interior discretization, the boundary discretization, or singularities. Testing can use traditional

grid-refinement computations within a fixed window or downscaling, using computations within

windows contracting toward a focal point of interest. In large-scale grid-refinement studies, exten-

sive amounts of data are involved and integral norms often do not provide sufficient information

to isolate the source of errors. An attractive feature of the approach advocated here is that tests

can be tailored to pinpoint regions/solutions/grids of interest. Also, in DS-testing, very small mesh

sizes can be used to ensure that testing is within the asymptotic convergence range (where the

leading-order terms dominate).
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The overall testing process is shown in Figure 1, summarizing relations between convergence

orders of discretization and truncation errors predicted by DS-analysis, observed in DS tests, and

observed in grid-refinement computations. The analytical estimates predict error convergence ob-

served in DS tests; the estimates are conservative because they do not account for possible error

cancellation occurring on regular (i.e., mapped) grids. The DS tests predict truncation-error conver-

gence precisely, but can be overly optimistic predictors of global discretization-error convergence

because they do not account for possible discretization-error accumulation.

DS-Analysis Estimates

• conservative for truncation errors

• conservative for discretization errors

⇓
DS-Test Estimates

• exact for truncation errors

• optimistic for discretization errors

⇓ ⇓

Grid-Refinement

Truncation Error
⇒ Grid-Refinement

Discretization Error

Figure 1. Overall testing process.

The entries in Figure 1 are arranged

from lowest (upper box) to highest (lower

right box) computational cost. Unfortu-

nately, the less expensive estimates are

more difficult to interpret correctly. For

example, large-scale 3D grid-refinement

computations are quite expensive; but it is

quite simple to ascertain attainment of de-

sign order in grid refinement if an exact so-

lution is available. In monitoring trunca-

tion errors, the solutions need not be deter-

mined, only residuals need to be evaluated

with the manufactured solution. Trunca-

tion error assessment is thus inexpensive,

but it is more difficult to interpret; when

interpreted correctly, it is a powerful ver-

ification tool. The DS-test is an inexpen-

sive method to verify convergence of dis-

cretization errors. Because DS-test esti-

mates neglect certain error accumulation

mechanisms, the extent to which they can

be trusted as predictors of global accuracy is an area of current research. In any case, the DS-

test is always an optimistic predictor of discretization error, so if the test fails to predict design

performance, there is certainly an error in either the formulation or the implementation. Thus, the

hierarchy of analytical and computational estimates can be used to complement current verification

practices in large-scale simulations.

The paper is organized as follows. Elements of the analysis are defined first, followed by the

definition of consistent refinement with an example. Windowing and downscaling are discussed

in the next two sections. Examples are shown for elliptic and inviscid equations, including a

comparative accuracy assessment of commonly-used FVD schemes on general unstructured grids
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of mixed type and local accuracy deterioration at boundary intersections using tailored DS tests.

Recommendations on verification procedures intended for use within large-scale computational

applications are given. The final section contains concluding remarks.

Elements of Analysis

The FVD schemes are derived from the integral form of a conservation law,∮
Γ

(F · n̂) dΓ =

∫∫
Ω

(f − S) dΩ, (1)

wheref is a forcing function independent of the solution,S is a solution-dependent source func-

tion, Ω is a control volume with boundaryΓ, n̂ is the outward unit normal vector, andF is the flux

vector. The main accuracy measure of any FVD scheme is thediscretization error, Ed, defined as

the difference between the exact continuous solution,Q, to the differential conservation law

∇F = f − S (2)

and the exact discrete solution,Qh, of the discretized equations (1)

Ed = Q−Qh. (3)

A scheme is considered as design-order accurate, if its discretization errors converge with the

design order in the norm of interest.

A common approach to evaluate the accuracy of discrete schemes is to monitor the convergence

of truncation errors. Traditionally, truncation error,Et, measures the accuracy of the discrete

approximation to the differential equations (2).5,6 For finite differences, it is found by comput-

ing the discrete residuals after substituting the exact solution for the discrete solution. For FVD

schemes, the traditional truncation error is usually defined from a time-dependent standpoint.7,8 In

the steady-state limit, after substituting the exact solutionQ into the normalized discrete equations

(1), the truncation error is defined as

Et =
1

|Ω|

∫∫
Ω

(
fh − Sh (Q)

)
dΩ−

∮
Γ

(
Fh (Q) · n̂

)
dΓ

 , (4)

whereFh is a reconstruction of the fluxF at the boundaryΓ, |Ω| is the measure of the control

volume,
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|Ω| =
∫∫
Ω

dΩ, (5)

fh andSh are, respectively, approximations of the forcing functionf and the source functionS on

Ω, and the integrals are computed according to some quadrature formulas.

Assuming the discretization error to be small comparing to the exact solution,Q, ( |Ed| << |Q|
), the discretization error can be evaluated as

Ed ≈ J−1(Q)Et(Q), (6)

where

J (Q) =
∂

∂Q
Et(Q), (7)

is the Jacobian of the truncation error expression (4).

The traditional definition of truncation error is very useful for structured (regular) grids because

the truncation errors converge asO(hp) on sequences of refined meshes, whereh is a character-

istic mesh size andp is the design discretization-accuracy order of the method. For unstructured

grid computations, the convergence of traditional truncation errors is often misleading. Previous

studies9–12 noted that 2nd-order convergence of truncation errors for some commonly used FVD

schemes can be achieved only on grids with a certain degree of geometric regularity. Examples

published elsewhere3 and in this paper show that the truncation errors of a design-order scheme

can exhibit a lower order of convergence or, in some cases, not converge at all. For some formally

inconsistent FVD schemes (traditional truncation errors do not converge), it has been rigorously

proven that the discretization errors, in fact, converge.13

Note, however, that the definition of truncation error as a measure of approximation accuracy

is not unique. For example, one can define the truncation error of approximating the integral

equation (1) by changing the normalization parameter in (4) to be a measure of the control-volume

boundary,|Γ|, instead of|Ω|; other reasonable definitions are also possible. The convergence order

of these truncations errors may significantly differ. However, the relation (6) provides the correct

order of discretization-error convergence for any definition of truncation error.

The complexity of evaluation of the discretization-accuracy order rests with evaluation of the

inverse Jacobian; as mentioned above, truncation errors are easy to compute for a representative

manufactured solution. The inverse Jacobian accounts for both interior and boundary discretiza-

tions. An example of evaluations of the inverse Jacobian for a formulation focusing on the discrete

boundary conditions is given elsewhere.14 The DS-analysis evaluates the inverse Jacobians locally

using an equivalent linear operator approach;3 the approach distinguishes clearly between inviscid

and viscous equations and even between different equations/solution components within a given

system.
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In this paper, the tests in the windows are performed for representative manufactured solutions.

The manufactured solutions used herein are of two types, either simple analytic functions (collec-

tions of polynomials or sines) or exact solutions. The corresponding forcing functions are found by

substituting these solutions into the continuous governing equations and boundary conditions. The

intent of the approach is to facilitate testing of discretizations and boundary conditionsin situ for

large-scale computations; this is possible with slight modifications of most boundary conditions,

e.g., evaluating no-slip conditions with a specified wall velocity instead of the typical zero velocity

condition. Likewise, in the farfield, the exterior conditions are taken from the exact solution rather

than from the typical assumption of constant exterior conditions. Not all boundary conditions are

amenable to such modifications (e.g., inviscid tangency) and for these we use exact (or manufac-

tured) solutions associated with a particular geometry. An alternative is the mapping construction

used by Bond et al.15

Consistent Refinement

Figure 2. Illustration of node-centered

median-dual control volume (shaded)

and cell-centered primal control volume

(hashed) in FVD schemes.

The general FVD approach requires partitioning the do-

main into a set of non-overlapping control volumes and nu-

merically implementing equation (1) over each control vol-

ume. Two types of FVD schemes are considered: node-

centered schemes, in which solution values are defined at the

mesh nodes, and cell-centered schemes, in which solutions

are defined at the centroids of the control volumes. In the 2D

examples considered here, the primal meshes are composed

of triangular and quadrilateral cells; in 3D computations the

cells are tetrahedral, prismatic, or hexahedral. Themedian-

dual partition16,17 used to generate control volumes for the

node-centered discretization is illustrated in Figure 2 for two

dimensions. These non-overlapping control volumes cover the entire computational domain and

compose a mesh that is dual to the primal mesh. For cell-centered FVD schemes, the primal cells

serve as control volumes (Figure 2).

The discrete solution is represented as a piecewise linear function defined either within primal

or dual cells. The discretizations are applied on a sequence of refined grids satisfying theconsistent

refinement property. This property requires the characteristic distance across primal and dual cells

to decrease consistently with increase of the total number of degrees of freedom,N. The charac-

teristic distance should tend to zero asN−1/d whered is the number of spatial dimensions. The

property enables a meaningful assessment of the asymptotic order of error convergence. In par-

ticular, on 3D unstructured meshes satisfying the consistent refinement property, the discretization
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errors of 2nd-order FVD schemes are expected to be proportional toN−2/3.

An equivalent mesh size based on the degrees of freedom is defined ashN = N−1/d. An

equivalent mesh size based on a characteristic distance is defined in terms of norms of the local

control-volume function, i.e.,hV = ||V 1/d|| where|| · || is a norm of choice. For consistently

refined meshes,hV is a linear function ofhN for any region within the grid (or the entire grid).

The assessment of consistent refinement is purely geometric and could be done automatically by

inspecting the mesh over local subsets of the domain. Such a technique is envisioned to be most

useful during the grid generation phase to identify and and repair regions where the grids are not

consistently refined.

x

z

-15 -10 -5 00

5

10

15

(a) Coarse grid (farfield).
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(b) Fine grid (farfield).
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(c) Coarse grid (nearfield).
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(d) Fine grid (nearfield).

Figure 3. Partial view of surface grids on symmetry plane and sphere.

To illustrate the concept, we analyze three unstructured tetrahedral grids generated around a

sphere; the grids are composed of 25,473 nodes, 82,290 nodes, and 328,463 nodes. In Figure 3,

farfield and nearfield views of the coarsest and finest surface grids are shown. In Figure 4, vari-

ations ofhV based on theL1 andL∞ norms ofV 1/3 are shown versus the equivalent mesh size

hN = N−1/3, each normalized by the value on the coarsest grid. A consistently refined mesh
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Figure 4. Consistent refinement check using normalized equivalent mesh sizes.

variation is denoted by a dashed line in the figure. Based on theL1 norm, hV is linear but the

hV computed with theL∞ norm shows that the mesh is not consistently refined. Examination

of the grids in Figure 3 confirms that the mesh near the farfield boundary is not consistently re-

fined. Inviscid incompressible equations for the flow around a sphere have been discretized with

a 2nd-order node-centered FVD scheme and solved on these grids. TheL1 norms of the errors in

pressure, shown versushV in Figure 5, converge with second order, in spite of the inconsistent

refinement. This result is probably because the solution variations are much larger near the surface

than near the farfield boundary. With continued inconsistent refinement, the discretization error

convergence would eventually degrade.

Equivalent Mesh Size, hV
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1st Order Variation

2nd Order Variation

Node-Centered
Discretization (3 Grids)

Cell-Centered
Discretization (1 Grid)

Figure 5. Variation of L1 norm of error in pressure with grid refinement.

The discretization error on the coarsest grid using a cell-centered 2nd-order FVD scheme is

also shown in the figure. The cell-centered scheme has approximately six times as many degrees

of freedom as the node-centered scheme on the same grid. The discretization errors are compa-
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rable for the two schemes when the number of degrees of freedom is matched. Other results (not

shown) generated with consistently-refined meshes over segments of the sphere confirm that the

discretization accuracy of cell-centered and node-centered grids is comparable for comparablehV .

Note that this is contrary to the findings of Levy and Thacker18 and Mavriplis;19 they reported cor-

relation between node-centered and cell-centered transonic results on grids with the same number

of degrees of freedom on the surface.

Windowing

Figure 6. Sketch of possible windows superimposed

on an unstructured grid. Regions denoted by dashed

line are windows preserving body geometry (with

gray focal points).

To provide a framework for assessing per-

formance of codes in specific large-scale com-

putations, we introduce the concept of window-

ing. A window is an arbitrarily-shaped subdo-

main within the computational domain serving

as a reference frame for testing and usually con-

tains a focal point of interest. Figure 6 shows a

sketch of possible windows superimposed on an

unstructured grid. Solid line regions are shown

with black focal points and dashed-line regions

are shown with with gray focal points; the lat-

ter regions preserve the body geometry (curva-

ture) within the windows. Each test captures an entry from the three groups of features af-

fecting error convergence: (1) problem-related features; (2) solution-related features; and (3)

discretization/grid-related features.

The problem-related features are determined by the scope of required computations. Specifi-

cally, the features include the interior governing equations, various types of boundary conditions

(e.g., inflow, outflow, tangency, no-slip, symmetry), and the geometrical features characterizing

boundaries (e.g., flat boundary, curved boundary, sharp corners). To address the problem-related

features, the windows should be placed in representative locations (interior, boundaries, corners,

etc.).

The solution-related features account for variations in the solutions typically encountered, in-

cluding smooth flows, shocks, stagnation regions, vortices, boundary layers, recirculating flows,

etc. Each feature should be represented by a specific choice of the manufactured solution.

The discretization/grid-related features concern variations in meshes and discretization schemes.

The features include the interior discretization scheme, discretization of boundary conditions, grid

composition (e.g., combinations of advanced-layer (prismatic) regions with interior tetrahedral

regions), approximation of geometry (flat panel or higher-order approximation), etc. Interfaces be-
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tween regions with different types of meshes as well as allowed grid singularities, such as hanging

nodes, degenerate cells, etc., should be considered as separate grid-related features.

Within computational windows, the FVD scheme under study is supplemented with a set of

boundary conditions at the interface between the interior and the windowing domain (see white

squares in Figure 7); overspecification from the known manufactured solution is a typical choice.

In studying accuracy of discretized boundary conditions, i.e., when the focal point is at the physical

boundary, the physical conditions are implemented at the boundary surface; overspecification can

still be applied at the remaining interfaces (see sketches of downscaled windows in Figure 7 and

boundary tests in Figure 12). The freedom to choose the manufactured solution, the focal point,

the shape of domains, and the type of interface boundary conditions greatly simplifies testing.

To verify a code for particular applications, each representative triplet of features requires a

designated test; convergence of truncation and discretization errors observed in all representative

tests should be understood and accepted as satisfactory. For example, in the interior of structured

grids, the truncation errors of FVD schemes for smooth manufactured solutions are expected to sat-

isfy the design order. On unstructured grids, the norms of truncation errors often converge slower

than corresponding norms of discretization errors; the truncation error convergence is allowed to

be 1 order lower than the design order for inviscid-dominated equations and 2 orders lower for

viscous-dominated terms.3

Establishing the discretization-error convergence order in global grid-refinement computations

is not practical because discrete solutions must be computed on grids with prohibitively many

degrees of freedom. Constraining the computations to smaller windows makes them more afford-

able; the DS tests radically reduce the complexity because the number of degrees of freedom on

each grid is kept (approximately) constant. As mentioned earlier, if the observed convergence of

either discretization or truncation errors is slower than expected, this is an unambiguous indication

of deficiencies in either formulation or implementation. Some deficiencies may be found accept-

able, for example, when large discretization errors are generated locally and remain local, without

affecting integral norms of the errors computed over the entire domain. As an example, for invis-

cid equations at stagnation, the convergence of discretization errors of velocity components tends

to degenerate by one order.3 This degeneration may or may not be noticed depending on the flow

Reynolds number. Even if observed, the increased discretization error may stay local and not affect

convergence of theL1 norms of the discretization errors.

Downscaling (DS) Test

The DS test employs numerical computations on a sequence of contracted domains zooming

toward a focal point within the original computational domain (Figure 7). There are at least two

possible strategies for grid generation on these contracted domains. The first strategy is termed
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“scaled grid” (Figure 7(a)). With this strategy, the first (coarsest) computational domain is defined

as a subdomain of the investigated global mesh containing the focal point; other (finer) domains

and their mesh patterns are derived by scaling down this first domain (e.g., repeatedly multiplying

all the distances from the focal point by a given factor, say,1/2 or 1/4). An independent grid

(Figure 7(b)) can be generated on each domain, assuming that the consistent refinement property

is satisfied, i.e., the characteristic distance across a grid cell is scaled down with the same rate as

the diameter of the contracted domains. This second strategy is termed “independent grid genera-

tion.” The scaled-grid approach is especially useful for studying interior discretizations and straight

boundaries. It is impractical for studies near a general (discretely defined) curvilinear boundary

because the physical boundary shape should be preserved on each grid in the DS sequence.

(a) Scaled grid. (b) Independent grid

generation (accounting

for curved physical

boundary).

Figure 7. Illustration of DS computational domains. Black bullets

mark the focal points; white squares mark the interface between

the interior and the DS-test domain.

The DS test evaluates local trun-

cation and discretization-error con-

vergence orders by comparing er-

rors obtained in computations on dif-

ferent scales. The convergence of

truncation errors in theL∞ norm

observed in global grid-refinement

computations will be bounded by

the worst DS-test estimate, provided

DS-testing samples all representa-

tive regions. Global convergence in

integral norms, e.g.,L1 norm, may

be better than the worst-DS estimate

because these norms are less sensi-

tive to fluctuations occurring locally.

The DS test is designed to pre-

dict the convergence orders of dis-

cretization and truncation errors ob-

served in large-scale computations.

The test exactly predicts truncation error convergence, but does not account for possible

discretization-error accumulation. One should interpret the DS test results carefully; in particu-

lar, on structured grids, convergence of discretization errors observed in DS tests is expected to

be higher order than that observed in grid-refinement computations. In our experience, DS-test

estimates of the discretization-error convergence orders on all truly unstructured multidimensional

grids (meaning grids with little or no geometric regularity) have been sharp predictors of grid-

refinement tests.
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Example 1: Two-dimensional Laplace Equation

To illustrate applications of DS tests, we first consider the two-dimensional Laplace equation,

as a model of the diffusion terms in the Navier-Stokes equations,

∆U = f, (8)

subject to Dirichlet boundary conditions. The equations are discretized with a 2nd-order node-

centered FVD scheme defined on a series of random mixed-element grids composed of triangles

and quadrilaterals. The scheme is defined on median-dual control volumes and uses a combination

of edge derivatives and Green-Gauss method for evaluating fluxes. Details of the discretization can

be found elsewhere.3,20 The manufactured solution and forcing term are taken asU = [sin2(πx) +

sin2(πy)]/2, f = −2π2[1− cos2(πx)− cos2(πy)].

x

y

-1 -0.5 0 0.5 1

1

1.5

2

Figure 8. A typical mixed-element unstructured grid

generated with random splitting and random pertur-

bation of the underlying quadrilateral grid.

For illustration purposes, the computations

performed in DS testing are compared with

global grid-refinement computations. For global

grid refinement, each grid is formed from an un-

derlying structured quadrilateral grid (Figure 8).

In terms of a polar,(r, θ), coordinate system, the

grid extent is defined asθ ∈ [π/6, π/3] in the

circumferential direction andr ∈ [1, 2.2] in the

radial direction. The decision to split (or not to

split) each structured quadrangle into triangles is

determined randomly; approximately half of the

quadrilaterals are split. In addition, the interior

grid points are perturbed from their original position by random shifts in the range[−
√

2/6,
√

2/6]

of the local mesh size in the radial direction. The sequences of globally refined grids are generated

with 2n+3 + 1 points in both the radial and circumferential directions, wheren = 0, 1, 2, 3, 4.

The sequences of DS grids are generated from a grid with 17 points in both the nominal radial and

circumferential directions and downscaled about the center of the domain by a factor2−s, where

s = 0, 2, 4, 6, 8. The grid topology remains unchanged.

TheL1 norms of truncation and discretization errors are shown in Figure 9 versus an equivalent

mesh size parameter,hV . Although not shown, error convergence rates in theL∞ norm are the

same as theL1-norm rates. In grid-refinement computations, the truncation errors remainO(1)

and the discretization errors converge with 2nd-order, precisely as predicted by the DS test. The

reason for theO(1) convergence of truncation errors is grid irregularity stemming from the usage

of truly unstructured grids. The literature frequently associatesO(1) convergence of truncation

errors on irregular grids as an indication of an inconsistent scheme that never converges to the
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exact result;9,21 this example clearly shows that this is not necessarily the case. The convergence

orders of both truncation and discretization errors are within the ranges specified for 2nd-order FVD

schemes applied to viscous equations.
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(a) DS test.
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(b) Grid refinement test.

Figure 9. Convergence of the discretization and truncation errors for the Laplace equation solved on irregular
mixed-element unstructured grids.

Example 2: Two-dimensional Incompressible Euler Equations

In this section we consider incompressible inviscid equations in the interior and next to the

curved tangency boundary. Inviscid fluxes for conservation of mass and momentum are defined as

F = f ī + ḡj =


βu

u2 + p

uv

 ī +


βv

uv

v2 + p

 j̄, (9)

where the vector of unknowns,Q = [u, v, p], includes the Cartesian velocities and the pressure;β

is an artificial compressibility parameter,20 taken asβ = 1 here.

Two common FVD schemes with design 2nd-order accuracy are investigated: an edge-reconstruction

median-dual node-centered scheme and a cell-centered scheme. The node-centered FVD scheme

uses the least square method for gradient reconstruction and integration over the control-volume

boundaries employing split (upwind) fluxes evaluated at the edge medians; details of the discretiza-

tion can be found elsewhere.3,20 The cell-centered FVD scheme also employs the least square

method for gradient reconstruction.16 Numerical tests presented are performed for a non-lifting
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flow around a cylinder of unit radius centered at the origin. The analytical solution for this prob-

lem is well known.3

The first set of tests is performed to study accuracy of the interior discretization. The compu-

tational domain is shifted away from the surface of the cylinder:1.5 ≤ r ≤ 4, 2π/3 ≤ θ ≤ 4π/3.

The two FVD schemes are studied on random triangular and random mixed-element grids. Ex-

amples of unstructured grids derived from an underlying structured grid are shown in Figure 10.

Grid randomization is introduced through random splitting (or not splitting) of structured quadri-

lateral cells. Each cell has equal probabilities to introduce either of the two diagonal choices or,

for mixed-element grids, no diagonals.
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(a) Random triangular.
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(b) Random mixed.

Figure 10. Typical unstructured grids for a

computational domain shifted away from the

surface of the cylinder.

For each formulation, grid-refinement and DS tests

are performed. In global grid-refinement computa-

tions, the underlying structured grid is refined by dou-

bling the number of intervals in the radial and angu-

lar directions. Randomization is introduced indepen-

dently on each scale. The inflow boundary conditions

are enforced at the boundary corresponding to the ex-

ternal radius; outflow conditions are enforced at all

other boundaries. In the DS test, the coarsest9 × 9

grid is scaled down around the pointr = 2.75, θ = π

by multiplying all angular and radial differences from

this point by a factor of0.5. Table 1 summarizes the

convergence of discretization and truncation errors ob-

served in these tests. The convergence orders are the

same between DS and grid-refinement in all norms and

for all variables and equations. The results confirm the

capability of the DS test to provide accurate estimates

for error convergence in grid-refinement computations.

The observed discretization-error convergence rates indicate that the edge-reconstruction node-

centered FVD scheme is 2nd-order accurate on triangular grids, but only first-order accurate on

mixed-element grids; the cell-centered formulation is 2nd-order accurate on all studied grids. There

are many ways to recover 2nd-order accuracy with the node-centered FVD scheme on mixed-

element grids. For example, 2nd- and 3rd-order node-centered schemes have been demonstrated

with face-reconstruction techniques for flux evaluation.3

Although not shown, we have implemented a central version of the edge-reconstruction node-

centered scheme and tested it for various unstructured grids. First-order convergence of discretiza-

tion errors has been observed on mixed-element and random quadrilateral grids. As with the

upwind computations, the results are consistent with some previous publications22 and contradict
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Formulation DS test Grid-refinement computations

Trunc. Error Discr. Error Trunc. Error Discr. Error

Node-centered,

random triangular grid O(h) O(h2) O(h) O(h2)
Node-centered,

mixed-element grid O(1) O(h) O(1) O(h)
Cell-centered,

random triangular grid O(h) O(h2) O(h) O(h2)
Cell-centered,

mixed-element grid O(h) O(h2) O(h) O(h2)

Table 1. Convergence of discretization and truncation errors for various unstructured grid formulations of the
2D inviscid incompressible equations on an inflow/outflow computational domain.

others.9 In the latter reference,O(1) convergence of discretization errors on randomly-perturbed

quadrilateral grids with a central scheme was observed; in-depth investigation of the discrepancies

has been reported.3

Another series of tests has been performed to study accuracy of the FVD schemes at the curved

tangency boundary; both schemes use isotropic triangular grids approximating the curved tangency

boundary by straight segments linking grid nodes located at the physical boundary. The approxi-

mation is illustrated in Figure 11 (a). The discrete tangency is enforced weakly over the straight

segments.

(a) Straight-segment
approximations to curved
tangency boundary
(dashed line).

X

Y

-1 -0.5 0 0.5 1

1

1.5

2

(b) Random triangular grid around the top of the cylin-
der.

Figure 11. Boundary approximation and grids for DS test of local boundary conditions.

A sequence of random triangular grids is generated at the top of the cylinder (1 ≤ r ≤ 2.2,
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(a) DS test: interior tangency boundary
condition.
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(b) DS test: inflow/tangency boundary
conditions.

Figure 12. Convergence of theL1 norm of x−momentum truncation errors and discretization errors in u
observed in DS tests performed on random triangular grids surrounding the top tangency boundary of the unit
cylinder; Dashed and dashed-dot lines denote 1st- and 2nd-order error variations; open squares in sketch denote
boundaries with overspecification.

π/3 ≤ θ ≤ 2π/3); a grid example is shown in Figure 11 (b). Figure 12 illustrates convergence of

theL1 norm of truncation and discretization errors in DS tests performed with the node-centered

edge-reconstruction FVD scheme. The left figure (a) exhibits convergence observed in the DS test

with the focal point in the middle of the tangency boundary; the right figure (b) shows results for

the DS test with the focal point next to the inflow/tangency corner. See sketches in Figure 12,

where the open squares denote boundaries with overspecification.

The 2nd-order convergence of discretization errors and the 1st-order convergence of truncation

errors demonstrated in the interior-tangency DS test comply with expectations for a 2nd-order ac-

curate scheme. Convergence deterioration is clearly observed in the DS test performed with the

inflow/tangency boundary conditions, indicating local loss of 2nd-order accuracy. This local ac-

curacy deterioration is explained and repaired elsewhere.3 Although not shown, theL1 norms of

the discretization errors in the corresponding grid-refinement test show the 2nd-order convergence,

while theL∞ norms of the errors converge with first order. These tests can serve as examples

that local accuracy deterioration can be acceptable, if the cause and effect on discretization er-

rors are fully understood. Analogous DS tests (not shown) performed for the cell-centered FVD

scheme yielded 2nd-order convergence of discretization errors at the interior tangency and at the

inflow/tangency corner.
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Recommendations on Verification Procedure

In this section, we provide recommendations on choosing relevant tests to verify a code for

a large-scale computation; the illustrative examples are motivated by the recent Drag Prediction

Workshops.2

There are two preliminary tests concerned with truncation-error computations (no need to

compute discrete solutions), which are useful for confirming consistency of the investigated FVD

scheme. The first test is performed for a smooth manufactured solution at fully-interior discretiza-

tions onstructured, consistently-refined meshes; design-order convergence of truncation errors is

expected. The second test is performed for a conservation law equation and a manufactured solu-

tion that produces linear fluxes: for example, mass conservation with constant density and linear

velocity variations, or momentum conservation with constant density, constant velocity, and linear

pressure variations. Second (or higher) order FVD schemes are expected to exhibit zero truncation

errors for equations associated with linear fluxes onanymesh.

Assuming the FVD scheme passed these consistency tests, the first step toward forming a

library of tests is to formulate a list (as complete as possible) of relevant problem-, solution- and

discretization/grid-related features. The following list has been compiled for a mixed-element

unstructured-grid solver considered for computations of a viscous flow around an airfoil.

• Problem-related featuresinclude Navier-Stokes equations with a given set of parameters,

such as Mach and Reynolds numbers; turbulence model; far-field, symmetry, and no-slip

boundary conditions; straight or smoothly curved profiles for the far-field and symmetry

boundaries, smooth and discontinuous boundary profiles for the airfoil surface. Each problem-

related feature is addressed in DS testing by choosing an appropriate computational window.

• Solution-related featuresinclude smooth flow, stagnation flow, vortex, shock, boundary

layer, and flow separation. Various solution features are allowed to interact. Each solution-

related feature is addressed in DS testing by choosing an appropriate manufactured solution.

• Discretization/grid-related featuresinclude the interior FVD scheme, boundary discretiza-

tion scheme, advanced-layer prismatic meshes within the boundary layers, and general tetra-

hedral meshes in the exterior. Interfaces between the regions with different meshing and

mesh singularities should be considered as separate grid-related features. Each feature is

addressed in testing by constructing the grid (grid-refinement generally requires additional

grid generation whereas DS-test may not) and by applying appropriate discrete equations.

A designated DS test should be designed for each relevant triplet of features, one from each

group. Not all triplets are relevant; for example, there is no need to test combination of far-field

boundary and a boundary-layer solution. In many cases, formulation deficiencies can be found by
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observing slow convergence of truncation errors. For other cases, e.g., 2nd-order unstructured FVD

schemes for viscous equations, the truncation errors are allowed to haveO(1) convergence; only

discretization error convergence can then be decisive.

As examples, let us consider the DS tests recommended for verifying the interior discrete vis-

cous equations (problem-related feature) for smooth solutions away from stagnation (solution-

related feature). A computational window is placed away from all physical boundaries and a

representative smooth manufactured solution is chosen. For such tests, the requirements for con-

vergence of truncation and discretization errors have already been formulated: truncation errors are

expected to be bounded and discretization errors are expected to converge with second order. Note

that on inviscid scales, where convection dominates diffusion, the truncation errors are expected to

converge with first order. At least four basic combinations of nonsingular meshes should be con-

sidered as grid-related features: (1) general prismatic meshes, (2) general tetrahedral meshes, (3)

random mixed-element meshes, and (4) meshes with a smooth interface between the prismatic and

tetrahedral regions. If certain mesh singularities (e.g., hanging nodes, zero-volume elements, other

types of elements beside triangular prisms and tetrahedrons) are allowed, they should be tested in

separate DS tests, usually in combination with the four basic nonsingular meshes.

For verifying the formulation for smooth solutions in the vicinity of a smooth surface, one has

to place the window at the surface and run DS tests with general prismatic meshes and manufac-

tured solutions representing boundary-layer flow, stagnation flow, and separated flow. For testing

smooth solutions around sharply angled parts of the airfoil surface, the same manufactured solu-

tions should be DS-tested on general mixed-element meshes. We have explored only a subset of the

recommended practices to date. In particular, the expected asymptotic behavior for discontinuous

solutions has yet to be addressed.

Concluding Remarks

New methodology for verification of finite-volume computational methods using unstructured

grids has been presented. The methodology is intended for two distinct usages. The first is in

verification of simulations for large-scale applications. The methodology provides estimates of

convergence order on the grids, boundary conditiions, and solutions of interest to the application.

However, only a limited number of grids are generally available for testing. Consistent refinement

measures can at least check that these available grids are appropriate for assessing order of conver-

gence; this concept can be applied to assess families of mapped (block-structured) grids as well.

In the absence of available grid generation, downscaling tests are particularly useful. Perhaps the

biggest roadblock toward wider usage is that the complete process requires manufactured solutions

appropriate to the application and such manufactured solutions are not widely available.

The second usage is in the development of algorithms. Because developments and demon-
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strations are simpler than large-scale applications, testing can use both downscaling and grid-

refinement approaches relatively easily. Also, appropriate manufactured solutions are easier to

construct. Oftentimes an algorithm is developed to overcome shortcomings of a given scheme and

the methodology is useful to pinpoint deficiencies and demonstrate improved capability. A build-

up procedure can be used to establish elements of a proposed scheme in a methodical fashion, from

interior residual discretizations to boundary residuals. Although we do not emphasize it here, we

have found the overall process useful in developing efficient solvers, as well as discretizations, for

unstructred grid schemes.

Acknowledgments

The three-dimensional results presented were computed within the FUN3D suite of codes at

NASA Langley Research Center (http://fun3d.larc.nasa.gov/ ). The contributions of

E. J. Nielsen and J. A. White of NASA in the implementation of the cell-centered discretization

within FUN3D are gratefully acknowledged.

References

1Roache, P. J.,VerificationandValidation in ComputationalScienceandEngineering, Hermosa, Albuquerque,

NM, 1998.
2Morrison, J. and Hemsch, M., “Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction

Workshop,” AIAA Paper 2007-0254, January 2007.
3Diskin, B. and Thomas, J. L., “Accuracy Analysis for Mixed-Element Finite-Volume Discretization Schemes,”

NIA Technical Report 2007-8, August 2007.
4Herbert, S. and Luke, E. A., “Honey, I Shrunk the Grids! A New Approach to CFD Verification Studies,” AIAA

Paper 2005-685, January 2005.
5Tannehill, J. C., Anderson, D. A. and Pletcher, R. H.,ComputationalFluid MechanicsandHeatTransfer, 2nd

Ed., Hemisphere, Washington, DC, 1997.
6Hirsch, C.,NumericalComputationof InternalandExternalFlows Volume I : Fundamentalsof Numerical

Discretization, John Wiley & Sons, NY, 1988.
7Turkel, E., “Accuracy of Schemes with Nonuniform Meshes for Compressible Fluid Flows,”AppliedNumerical

Mathematics, Vol. 2, 1986, pp. 529-550.
8Syrakos, A. and Goulas, A., “Estimate of the Truncation Error of Finite Volume Discretization of the Navier-

Stokes Equations on Collocated Grids,”Int. J.Numer.Meth.Fluids, Vol. 50, 2006, pp. 103-130.
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